Sex Prediction Final TestCompleted
Algorithm: Random Forest | Created: January 05, 2026 at 02:12
Performance Metrics
F1
0.5689
± 0.1181Auc
0.6287
± 0.1335Recall
0.5919
± 0.1303Accuracy
0.5919
± 0.1303Precision
0.6347
± 0.1326Detailed Metrics (Across All Folds)
| Metric | Mean | Std Dev | Min | Max |
|---|---|---|---|---|
| F1 | 0.5689 | 0.1181 | 0.4309 | 0.7667 |
| Auc | 0.6287 | 0.1335 | 0.4762 | 0.8194 |
| Recall | 0.5919 | 0.1303 | 0.4375 | 0.8125 |
| Accuracy | 0.5919 | 0.1303 | 0.4375 | 0.8125 |
| Precision | 0.6347 | 0.1326 | 0.4563 | 0.8500 |
Feature Selection Frequency
No chart available
Top Features (Avg. Importance)
| Rank | Feature | Mean | Std Dev |
|---|---|---|---|
| No feature importance data | |||
Classification Analysis
Configuration
Hyperparameters
| Max depth | 10 |
|---|---|
| N estimators | 100 |
| Tuning config | {"method"=>"random"} |
| Min samples split | 2 |
Data Configuration
| Feature Selection | none |
|---|---|
| Validation | kfold |
| Target Column | sex |
Generated Reports
No reports generated.
Pipeline Data & Stages
Pipeline execution flow and intermediate datasets.
CLI Command (Copy-Paste Ready)
OMP_NUM_THREADS=1 OPENBLAS_NUM_THREADS=1 MKL_NUM_THREADS=1 VECLIB_MAXIMUM_THREADS=1 NUMEXPR_NUM_THREADS=1 /opt/ml-env/bin/python /app/scripts/ml_pipeline.py --config /app/public/ml_results/72/job_config.jsonStandard Output (stdout)
{"job_id": 72, "algorithm": "random_forest", "n_folds": 5, "holdout_used": false, "per_fold_results": [{"fold": 1, "metrics": {"accuracy": 0.6470588235294118, "precision": 0.6980392156862746, "recall": 0.6470588235294118, "f1": 0.6319327731092437, "auc": 0.8194444444444444}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.5163403035480798, "glucose (\u00b5M)": 0.48365969645192025}, "y_true": [1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2], "y_pred": [1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2], "y_proba": [[0.565, 0.435], [0.1975, 0.8025], [0.2775, 0.7225], [0.30333333333333334, 0.6966666666666665], [0.4, 0.6], [0.2475, 0.7525], [0.1025, 0.8975], [0.33333333333333326, 0.6666666666666665], [0.91, 0.09], [0.5720000000000001, 0.428], [0.8300000000000002, 0.17], [0.3258333333333333, 0.6741666666666666], [0.3425, 0.6575], [0.6281439393939394, 0.37185606060606063], [0.2058333333333333, 0.7941666666666666], [0.172, 0.828], [0.192, 0.8079999999999999]]}, {"fold": 2, "metrics": {"accuracy": 0.5625, "precision": 0.6025641025641025, "recall": 0.5625, "f1": 0.5151515151515151, "auc": 0.71875}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.5243407985942803, "glucose (\u00b5M)": 0.47565920140571977}, "y_true": [2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2], "y_pred": [2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1], "y_proba": [[0.05, 0.95], [0.09127777777777776, 0.9087222222222222], [0.3513611111111112, 0.6486388888888888], [0.03427777777777778, 0.9657222222222224], [0.45666666666666667, 0.5433333333333333], [0.7266666666666666, 0.2733333333333334], [0.18166666666666664, 0.8183333333333335], [0.6866666666666668, 0.31333333333333335], [0.3716666666666667, 0.6283333333333334], [0.33849206349206346, 0.6615079365079365], [0.29099206349206347, 0.7090079365079365], [0.10333333333333332, 0.8966666666666667], [0.08833333333333333, 0.9116666666666667], [0.4116666666666666, 0.5883333333333334], [0.3925, 0.6074999999999999], [0.8977777777777777, 0.10222222222222221]]}, {"fold": 3, "metrics": {"accuracy": 0.4375, "precision": 0.45625000000000004, "recall": 0.4375, "f1": 0.4308823529411765, "auc": 0.4761904761904762}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.5186180879252331, "glucose (\u00b5M)": 0.48138191207476694}, "y_true": [1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2], "y_pred": [2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2], "y_proba": [[0.41, 0.59], [0.298, 0.7020000000000001], [0.31, 0.69], [0.3986666666666667, 0.6013333333333333], [0.5746666666666667, 0.4253333333333334], [0.4666666666666666, 0.5333333333333333], [0.135, 0.865], [0.56, 0.44], [0.5940000000000001, 0.4059999999999999], [0.9620000000000001, 0.038], [0.33175, 0.6682499999999999], [0.3975, 0.6025], [0.9525, 0.0475], [0.40951190476190474, 0.5904880952380952], [0.5326785714285713, 0.4673214285714286], [0.4025, 0.5975]]}, {"fold": 4, "metrics": {"accuracy": 0.5, "precision": 0.5666666666666667, "recall": 0.5, "f1": 0.5, "auc": 0.48333333333333334}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.4862161632014483, "glucose (\u00b5M)": 0.5137838367985518}, "y_true": [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], "y_pred": [1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2], "y_proba": [[0.95, 0.05], [0.96, 0.04], [0.7184722222222223, 0.28152777777777777], [0.85, 0.15], [0.88, 0.12], [0.83, 0.17], [0.35, 0.65], [0.6373650793650794, 0.36263492063492064], [0.7, 0.3], [0.17, 0.83], [0.525, 0.475], [0.71, 0.29], [0.21666666666666665, 0.7833333333333333], [0.12222222222222222, 0.8777777777777778], [0.395, 0.605], [0.325, 0.675]]}, {"fold": 5, "metrics": {"accuracy": 0.8125, "precision": 0.8500000000000001, "recall": 0.8125, "f1": 0.7666666666666666, "auc": 0.6458333333333333}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.4996323674063792, "glucose (\u00b5M)": 0.5003676325936208}, "y_true": [2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2], "y_pred": [2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], "y_proba": [[0.44976190476190475, 0.5502380952380953], [0.44976190476190475, 0.5502380952380953], [0.58875, 0.41125], [0.3516666666666666, 0.6483333333333333], [0.15, 0.85], [0.365, 0.635], [0.14833333333333334, 0.8516666666666666], [0.285, 0.715], [0.235, 0.765], [0.381, 0.619], [0.25, 0.75], [0.22285714285714284, 0.7771428571428572], [0.361, 0.639], [0.24, 0.76], [0.16714285714285715, 0.832857142857143], [0.42375, 0.57625]]}], "aggregated_metrics": {"accuracy": {"mean": 0.5919117647058824, "std": 0.13027370043190395, "min": 0.4375, "max": 0.8125}, "precision": {"mean": 0.6347039969834088, "std": 0.13256817039721716, "min": 0.45625000000000004, "max": 0.8500000000000001}, "recall": {"mean": 0.5919117647058824, "std": 0.13027370043190395, "min": 0.4375, "max": 0.8125}, "f1": {"mean": 0.5689266615737203, "std": 0.11812684868331164, "min": 0.4308823529411765, "max": 0.7666666666666666}, "auc": {"mean": 0.6287103174603175, "std": 0.13354895641349385, "min": 0.4761904761904762, "max": 0.8194444444444444}}, "aggregated_feature_importance": {"alanine (\u00b5M)": {"mean": 0.5090295441350842, "std": 0.014061146243590936}, "glucose (\u00b5M)": {"mean": 0.49097045586491594, "std": 0.014061146243590929}}, "feature_selection_stats": [{"feature": "alanine (\u00b5M)", "count": 5, "frequency": 1.0}, {"feature": "glucose (\u00b5M)", "count": 5, "frequency": 1.0}]}
Standard Error (stderr)
/app/multiomics_analysis/visualization/charts.py:71: SyntaxWarning: invalid escape sequence '\p'
label=f'Mean ROC (AUC = {mean_auc:.2f} $\pm$ {std_auc:.2f})',
Starting pipeline execution for Job: 72
Loaded data: (81, 2) features, (81,) targets.
Running nested cross-validation...
Generating visualizations...
Generating reports...
Warning: weasyprint not installed. PDF report skipped.
Warning: python-docx not installed. DOCX report skipped.
Warning: excel writer dependency missing. Excel report skipped.
Analysis complete. Results saved to /app/public/ml_results/72