Sex Prediction Final TestCompleted

Algorithm: Random Forest | Created: January 05, 2026 at 02:12

Performance Metrics
F1

0.5689

± 0.1181
Auc

0.6287

± 0.1335
Recall

0.5919

± 0.1303
Accuracy

0.5919

± 0.1303
Precision

0.6347

± 0.1326

Detailed Metrics (Across All Folds)
MetricMeanStd DevMinMax
F10.56890.11810.43090.7667
Auc0.62870.13350.47620.8194
Recall0.59190.13030.43750.8125
Accuracy0.59190.13030.43750.8125
Precision0.63470.13260.45630.8500
Feature Selection Frequency
No chart available
Top Features (Avg. Importance)
RankFeatureMeanStd Dev
No feature importance data
Classification Analysis
Configuration
Hyperparameters
Max depth10
N estimators100
Tuning config{"method"=>"random"}
Min samples split2
Data Configuration
Feature Selectionnone
Validationkfold
Target Columnsex
Generated Reports
No reports generated.
Pipeline Data & Stages

Pipeline execution flow and intermediate datasets.

CLI Command (Copy-Paste Ready)
OMP_NUM_THREADS=1 OPENBLAS_NUM_THREADS=1 MKL_NUM_THREADS=1 VECLIB_MAXIMUM_THREADS=1 NUMEXPR_NUM_THREADS=1 /opt/ml-env/bin/python /app/scripts/ml_pipeline.py --config /app/public/ml_results/72/job_config.json
Standard Output (stdout)
{"job_id": 72, "algorithm": "random_forest", "n_folds": 5, "holdout_used": false, "per_fold_results": [{"fold": 1, "metrics": {"accuracy": 0.6470588235294118, "precision": 0.6980392156862746, "recall": 0.6470588235294118, "f1": 0.6319327731092437, "auc": 0.8194444444444444}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.5163403035480798, "glucose (\u00b5M)": 0.48365969645192025}, "y_true": [1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2], "y_pred": [1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2], "y_proba": [[0.565, 0.435], [0.1975, 0.8025], [0.2775, 0.7225], [0.30333333333333334, 0.6966666666666665], [0.4, 0.6], [0.2475, 0.7525], [0.1025, 0.8975], [0.33333333333333326, 0.6666666666666665], [0.91, 0.09], [0.5720000000000001, 0.428], [0.8300000000000002, 0.17], [0.3258333333333333, 0.6741666666666666], [0.3425, 0.6575], [0.6281439393939394, 0.37185606060606063], [0.2058333333333333, 0.7941666666666666], [0.172, 0.828], [0.192, 0.8079999999999999]]}, {"fold": 2, "metrics": {"accuracy": 0.5625, "precision": 0.6025641025641025, "recall": 0.5625, "f1": 0.5151515151515151, "auc": 0.71875}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.5243407985942803, "glucose (\u00b5M)": 0.47565920140571977}, "y_true": [2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2], "y_pred": [2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1], "y_proba": [[0.05, 0.95], [0.09127777777777776, 0.9087222222222222], [0.3513611111111112, 0.6486388888888888], [0.03427777777777778, 0.9657222222222224], [0.45666666666666667, 0.5433333333333333], [0.7266666666666666, 0.2733333333333334], [0.18166666666666664, 0.8183333333333335], [0.6866666666666668, 0.31333333333333335], [0.3716666666666667, 0.6283333333333334], [0.33849206349206346, 0.6615079365079365], [0.29099206349206347, 0.7090079365079365], [0.10333333333333332, 0.8966666666666667], [0.08833333333333333, 0.9116666666666667], [0.4116666666666666, 0.5883333333333334], [0.3925, 0.6074999999999999], [0.8977777777777777, 0.10222222222222221]]}, {"fold": 3, "metrics": {"accuracy": 0.4375, "precision": 0.45625000000000004, "recall": 0.4375, "f1": 0.4308823529411765, "auc": 0.4761904761904762}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.5186180879252331, "glucose (\u00b5M)": 0.48138191207476694}, "y_true": [1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2], "y_pred": [2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2], "y_proba": [[0.41, 0.59], [0.298, 0.7020000000000001], [0.31, 0.69], [0.3986666666666667, 0.6013333333333333], [0.5746666666666667, 0.4253333333333334], [0.4666666666666666, 0.5333333333333333], [0.135, 0.865], [0.56, 0.44], [0.5940000000000001, 0.4059999999999999], [0.9620000000000001, 0.038], [0.33175, 0.6682499999999999], [0.3975, 0.6025], [0.9525, 0.0475], [0.40951190476190474, 0.5904880952380952], [0.5326785714285713, 0.4673214285714286], [0.4025, 0.5975]]}, {"fold": 4, "metrics": {"accuracy": 0.5, "precision": 0.5666666666666667, "recall": 0.5, "f1": 0.5, "auc": 0.48333333333333334}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.4862161632014483, "glucose (\u00b5M)": 0.5137838367985518}, "y_true": [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], "y_pred": [1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2], "y_proba": [[0.95, 0.05], [0.96, 0.04], [0.7184722222222223, 0.28152777777777777], [0.85, 0.15], [0.88, 0.12], [0.83, 0.17], [0.35, 0.65], [0.6373650793650794, 0.36263492063492064], [0.7, 0.3], [0.17, 0.83], [0.525, 0.475], [0.71, 0.29], [0.21666666666666665, 0.7833333333333333], [0.12222222222222222, 0.8777777777777778], [0.395, 0.605], [0.325, 0.675]]}, {"fold": 5, "metrics": {"accuracy": 0.8125, "precision": 0.8500000000000001, "recall": 0.8125, "f1": 0.7666666666666666, "auc": 0.6458333333333333}, "selected_features": ["alanine (\u00b5M)", "glucose (\u00b5M)"], "feature_importance": {"alanine (\u00b5M)": 0.4996323674063792, "glucose (\u00b5M)": 0.5003676325936208}, "y_true": [2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2], "y_pred": [2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], "y_proba": [[0.44976190476190475, 0.5502380952380953], [0.44976190476190475, 0.5502380952380953], [0.58875, 0.41125], [0.3516666666666666, 0.6483333333333333], [0.15, 0.85], [0.365, 0.635], [0.14833333333333334, 0.8516666666666666], [0.285, 0.715], [0.235, 0.765], [0.381, 0.619], [0.25, 0.75], [0.22285714285714284, 0.7771428571428572], [0.361, 0.639], [0.24, 0.76], [0.16714285714285715, 0.832857142857143], [0.42375, 0.57625]]}], "aggregated_metrics": {"accuracy": {"mean": 0.5919117647058824, "std": 0.13027370043190395, "min": 0.4375, "max": 0.8125}, "precision": {"mean": 0.6347039969834088, "std": 0.13256817039721716, "min": 0.45625000000000004, "max": 0.8500000000000001}, "recall": {"mean": 0.5919117647058824, "std": 0.13027370043190395, "min": 0.4375, "max": 0.8125}, "f1": {"mean": 0.5689266615737203, "std": 0.11812684868331164, "min": 0.4308823529411765, "max": 0.7666666666666666}, "auc": {"mean": 0.6287103174603175, "std": 0.13354895641349385, "min": 0.4761904761904762, "max": 0.8194444444444444}}, "aggregated_feature_importance": {"alanine (\u00b5M)": {"mean": 0.5090295441350842, "std": 0.014061146243590936}, "glucose (\u00b5M)": {"mean": 0.49097045586491594, "std": 0.014061146243590929}}, "feature_selection_stats": [{"feature": "alanine (\u00b5M)", "count": 5, "frequency": 1.0}, {"feature": "glucose (\u00b5M)", "count": 5, "frequency": 1.0}]}
Standard Error (stderr)
/app/multiomics_analysis/visualization/charts.py:71: SyntaxWarning: invalid escape sequence '\p'
  label=f'Mean ROC (AUC = {mean_auc:.2f} $\pm$ {std_auc:.2f})',
Starting pipeline execution for Job: 72
Loaded data: (81, 2) features, (81,) targets.
Running nested cross-validation...
Generating visualizations...
Generating reports...
Warning: weasyprint not installed. PDF report skipped.
Warning: python-docx not installed. DOCX report skipped.
Warning: excel writer dependency missing. Excel report skipped.
Analysis complete. Results saved to /app/public/ml_results/72