Hyperparameter Tuning Process

What is Hyperparameter Tuning?

Hyperparameter Tuning is the process of finding the best settings for a machine learning algorithm. Unlike model parameters learned from data, hyperparameters are set before training.

Common Hyperparameters

  • Random Forest: nestimators, maxdepth, minsamplessplit
  • XGBoost: learningrate, maxdepth, n_estimators
  • SVM: C, kernel, gamma
  • Neural Network: learning_rate, layers, neurons

Tuning Methods

Grid Search

  • Tests all combinations of specified values
  • Exhaustive but slow

Random Search

  • Randomly samples parameter combinations
  • Faster, often finds good solutions

In CMMI-DCC

  • Select tuning method when creating ML pipeline
  • Specify parameter ranges to search
  • View best parameters in results

Related Terms

  • Grid Search: Exhaustive parameter search
  • Random Search: Stochastic parameter search
  • Cross-Validation: Used to evaluate each combination